
J Fluid Mech (19961, l o /  326 pp 357-372 
Copyright c) 1996 Cambridge University Press 

357 

Sel f-similari ty of decaying two-dimensional 
turbulence 

By PETER BARTELLO' AND T O M  W A R N 2  

'Recherche en Prevision Numkrique, Atmospheric Environment Service, 21 21 voie de Service nord, 
Route Transcanadienne, Dorval (Qukbec) H9P 153, Canada 

2Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street 
West, Montreal, (Qukbec) H3A 2K6, Canada 

(Received 28 December 1995 and in revised form 11 June 1996) 

Simulations of decaying two-dimensional turbulence suggest that the one-point vor- 
ticity density has the self-similar form 

Pw hi t f (ut)  

implied by Batchelor's (1969) similarity hypothesis, except in the tails. Specifically, 
similarity holds for (01 < corn, while pco falls off rapidly above. The upper bound of the 
similarity range, om, is also nearly conserved in high-Reynolds-number hyperviscosity 
simulations and appears to be related to the average amplitude of the most intense 
vortices (McWilliams 1990), which was an important ingredient in the vortex scaling 
theory of Carnevale et al. (1991). 

The universal function f also appears to be hyperbolic, i.e. 

f(x) 'v c/2(x('fqt, 

for 1x1 > x*, where qc = 0.4 and x* = 70, which along with the truncated similarity 
form implies a phase transition in the vorticity moments 

between the self-similar 'background sea' and the coherent vortices. Here cq and c 
are universal. Low-order moments are therefore consistent with Batchelor's similarity 
hypothesis whereas high-order moments are similar to those predicted by Carnevale 
et al. (1991). A self-similar but less well-founded expression for the energy spectrum 
is also proposed. 

It is also argued that o, = x * / t  represents 'mean sea-level', i.e. the (average) 
threshold separating the vortices and the sea, and that there is a spectrum of vortices 
with amplitudes in the range (u5 ,wm) .  The total area occupied by vortices is also 
found to remain constant in time, with losses due to mergers of large-amplitude 
vortices being balanced by gains due to production of weak vortices. By contrast, 
the area occupied by vortices above afixed threshold decays in time as observed by 
McWilliams (1990). 
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1. Introduction 

According to the two-dimensional Navier-Stokes equations 
1.1. Fundamentals 

= - v 3 2  and -- dgq - -vq(q - l)(~o~q-2vo.vo) 
d& 
dt dt 
- 

for q > 1 for horizontally homogeneous incompressible flow, where 

8 = ( v ~ ( x ) v ~ ( x ) ) / ~  and 2Tq = ( lo (x ) lq ) ) .  

Energy and (all) vorticity moments are therefore conserved when v = 0, while energy 
and moments of order q 2 1 decay when v # 0. Here, zli and o are the velocity 
and vorticity, while angle brackets denote ensemble averages. Furthermore, since the 
enstrophy 3 = 9 2 / 2  is bounded by its initial value in two-dimensional turbulence, 
the energy dissipation vanishes and energy conservation is recovered in the limit 
v -+ 0. Energy is therefore sometimes said to be a rugged invariant (although the 
terminology varies). Also, since vorticity contours are stretched in compex flows, 
vorticity gradients amplify so that all positive-order vorticity moments appear to 
dissipate in the small-viscosity limit. 

1.2. Batchelor’s similarity theory 
The observation that energy is a rugged invariant whereas positive-order vorticity 
moments probably decay prompted Batchelor (1969) to hypothesize that outside 
the dissipation range and after sufficient time, high-Reynolds-number decaying two- 
dimensional turbulence depends only on d and t. In this case the only velocity, length, 
and time scales are 

U = &IJ2, L = Ut and 

so the energy spectrum, defined by 

takes the form 

E(k,t) - U3t F(kUt) for 
as t -+ 00, where k d  is the dissipation wavenumber 
Energy is therefore predicted to cascade upscale. 

T = t  

k<kd (1.1) 
and F is a universal function. 

Batchelor’s hypothesis has other implications. The one-point vorticity density is 
predicted to have the self-similar form 

PW(W t )  - t f (ot) ,  (1.2) 

for some symmetric universal function f ,  while 

b I q )  - C q t - q ,  

where cq is a universal function of q (the moments of f). The density therefore 
narrows with time while positive-order moments decay like t-q. The predicted density 
is also ‘super universal’ in the sense that it is completely independent of the flow state. 
By contrast, the one-point velocity density is predicted to take the form 
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where g is a (symmetric) universal function, while 

( l v lq )  - aq U”. 

The velocity statistics are therefore fixed by the energy and are predicted to be 
invariant in time. As far as we are aware (1.2) and (1.4) remain untested. 

Strictly speaking, Batchelor’s hypothesis applies only to unbounded flows since the 
inverse cascade must be arrested on finite or doubly periodic domains and the domain 
size D becomes important. It is expected to describe the intermediate asymptotics 
when LID 4 1 initially however, where L represents the energy-containing scale. 

According to Batchelor’s hypothesis L - Ut,  implying that the Reynolds number 
Re = U L / v  increases with time so that energy conservation in the limit t -+ co cannot 
be ruled out, even if the initial Reynolds number is finite. In this case the final, rather 
than the initial, energy should control the long-term behaviour. Energy conservation 
at large times is also consistent in that the enstrophy decay law gives the energy 
dissipation c2v / t2  and a finite energy loss over the interval ( t ,  co) that is independent 
of U .  In other words, Batchelor’s hypothesis suggests that finite-Reynolds-number 
flows on unbounded domains do not approach a state of rest as t -+ 00 as do doubly 
periodic or bounded flows. 

Numerical studies of decaying two-dimensional turbulence beginning with Lilly 
(1969) have confirmed that energy and enstrophy are transferred to large and small 
scales respectively, while subsequent studies have shown that an initially random 
vorticity field organizes into a collection of vortices on a background ‘sea of vorticity’ 
which gradually increase in scale and diminish in number through a complicated 
sequence of mergers (Fornberg 1977; Basedvant et al. 1981; McWilliams 1984, 1990; 
Benzi, Patarnello & Santangelo 1987). The vortices are coherent in the sense that their 
lifetimes are long compared to their recirculation times and become progressively more 
isolated with time, behaving in some respects like a collection of point vortices (Benzi 
et al. 1987, 1988, 1992; Carnevale, Pomeau & Young 1990; Carnevale et al. 1991; 
Weiss & McWilliams 1993). The statistical properties of the vortices also appear 
to depend on the nature of the initial conditions (Santangelo, Benzi & Legras 
1989). 

The observed self-organization and depletion of nonlinearities within the vor- 
tex cores undermines Batchelor’s similarity theory (McWilliams 1990; Carnevale 
et al. 1991). In particular (1.3) with q = 2 considerably overestimates the enstrophy 
decay rate. In other words (1.2) appears to fail as does (1.1) in view of the relation 
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2 = 1 k2E(k, t )  dk. 

Since extrema of the vorticity field are bounded by their initial values, the failure of 
(1.2) for large o is inevitable if the vorticity of each realization is bounded initially, 
since the tails of the distribution cannot be universal. The extent to which this 
disrupts the similarity of the moments depends on the nature of the tails. 

1.3. Vortex theory of Carnevale et al. 
On the basis of a ‘vortex census’ McWilliams (1990) and Carnevale et al. (1991) 
suggested that Batchelor’s hypothesis fails because of the existence of a second 
asymptotic invariant, which is characteristic of the amplitude of the most intense 
vortices. This is plausible given that the vortices grow in size and become increasingly 
sparse if a subset of the vortices either escapes interaction altogether or if their cores 
are protected from deformations and dissipation during interactions. 
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They also noted that when the emerging vortex population has narrowly distributed 

properties, then the long-time flow has the form of a dilute vortex gas consisting of 
vortices of amplitude reXt and radius a and that 

8 - pa41L and zq - Pa21,xt, 

p - t-6, 

a N $/4 

where p is the number density. Conservation of 8 and iQxt and the numerically 
observed scaling law 

where 5 2 0.75 (McWilliams 1990)t then imply 

and 

Since 

the fractional area occupied by the vortices is predicted to decrease with time. The 
enstrophy decay rate is also slower than implied by (1.3) as observed, and the decay 
rates of all moments are predicted to be independent of their order. The latter remains 
to be verified. Our simulations suggest that this is the case when q > 5/2. 

Weiss & McWilliams (1993) also present evidence that (1.5) holds even when text 
decays (slowly) because of finite Reynolds number effects. In particular they found 
that when the observed decay 

1,t - t-'l 
is accounted for in (1.5), then 

3 - t-(2fl+i'/2), 

which was in closer agreement with the simulations. 
Questions remain however, particularly regarding the role of the 'sea' and the 

extent to which the vortex population remains narrowly distributed as t + a. Also, 
no dimensionally consistent expression of the form (1.5) can be constructed from the 
invariants and time alone, suggesting that it is either incorrect or the parameter set 
b, t and text is incomplete. 

1.4. Generalized similarity 

If indeed there is a second asymptotic invariant as suggested by McWilliams' (1990) 
vortex census, then it can be used to generalize Batchelor's similarity theory provided it 
can be represented in terms of more conventional statistical quantities. One possibility 
is 

Wrn(t) = Zq+l/Zq, 
which according to (1.5) is proportional to text as t + cc and so should also be 
invariant. Alternatively 

might be invariant, athough this is more delicate and less certain due to its sensitivity 
to the tails of the distribution. 

t Huber & Alstrcam (1993) suggest this may be exact. 
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When Batchelor’s hypothesis is generalized to include ovn, it leads to the additional 
time and length scales 

while ( l . l ) ,  (1.2) and (1.4) are replaced by 

and U/com, - 1  
0, 

E ( k ,  t )  - U 3 t  F ( k U t ,  w,,t), (1 4 

Pw - t f ’ ( W W / o m )  (1.7) 

P U ( K  t )  - g(u/U,omt) lU.  (1.8) 

and 

Unfortunately these are not particularly informative. Progress is possible however, 
essentially because simulations suggest that (1.7) may have a simple dependence on 
o m .  

2. Numerical simulations 
2.1. Description o j  simulations 

Simulations using a (de-aliased) pseudo-spectral code have been performed at various 
resolutions, although only the highest which use 10242 collocation points will be 
presented. Even this is barely adequate given that the energy in the first decade must 
be kept small to avoid finite-domain effects, while the last decade must be reserved 
for the dissipation range. For most of the discussion below we will employ direct 
simulations of the Navier-Stokes equations. However, as noted in previous studies, 
the resolvable Reynolds numbers are simply too low to obtain convincing evidence 
for a second invariant unless some form of hyperviscosity is used, i.e. simulations 
based on 

d o  
dr 
- = (-1)”+’vpV2Pco. 

Here we use p = 8. Hyperviscosity has the advantage of compressing the dissipation 
range, presumably allowing a higher effective Reynolds number at a given resolution 
(although Reynolds numbers are difficult to compare). It has the disadvantage that 
vorticity extrema no longer decay a priori since the viscous flux of vorticity is no 
longer proportional to the vorticity gradient (McWilliams 1990; Mariotti, Legras 
& Dritschel 1994). We also find that the scaling properties deteriorate somewhat, 
perhaps because of the increased variability. The overall behaviour of the two 
simulations is similar however, but since there are differences, it seems best to regard 
them as distinct candidates for similarity, possibly with different universal behaviour. 

The simulated flow is doubly periodic on a square of sides 271 so that care must 
be taken to ensure it does not become ‘boxed in’ in the sense that the domain size 
becomes significant, arrests the inverse cascade and spoils similarity. Ideally energy 
should be confined to high wavenumbers throughout the simulation, although this is 
difficult to ensure because of the upscale energy transfer. Evidently 

(To/&) b 1 

is a necessary condition for the domain size to be unimportant. The Navier--Stokes 
integration was stopped after about 150 turnover times (see below) since this was no 
longer satisfied. The hyperviscosity run was stopped after about 300 turnover times, 
essentially because of excessive computation time. (The evolution slows with time so 
the sampling times must increase exponentially to observe significant changes.) 
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Ti 
0 
0.21 
0.45 
0.99 
2.18 
4.63 
9.93 

20.9 1 

6 
2.55 
1.96 
1.55 
1.35 
1.18 
1.07 
0.97 
0.89 

9 
10000 
2 826 
1119 

390 
137 
50 
19 
7 

Nt 
0 

16 
26 
40 
57 
79 

108 
146 

TABLE 1. Navier-Stokes simulation (v = 3 x 

In both simulations the initial energy spectrum is taken as 

with ki = 60 and random phases. The normalization constant was chosen so that 
9 = lo4 initially, which gives 8 of order unity. Since the time step is limited by 
[Ukm,,]-l, the number of steps per global turnover time 9-112 

A” w ( 8 / 9 ) 1 ’ 2 k m , x  

is fairly small initially and the early evolution is relatively fast. By the end of 
the simulation, A” increases by an order of magnitude and the evolution slows 
considerably. 

Since ensemble averages are estimated by area averages, they are strictly reliable 
only when the integral scale is much less than the domain size, which is certainly 
not the case near the end of the simulation. Tests at lower resolutions suggest that 
the scaling properties of the moments are much more robust than the moments 
themselves however, provided sampling error does not get completely out of control. 

2.2. Preliminary results 
Certain global statistics for the Navier-Stokes simulation at t = 0 and seven approx- 
imately logarithmically spaced ouput times Ti are presented in table 1. The Reynolds 
number of the energy-containing scale varies from a few hundred initially to around 
10000 by the end of the run. Also included is the integrated number of eddy turnover 
times 

Nt = 9(t’)l/* dt’, 

which gives a useful measure of the elapsed time for decaying turbulence, The degree 
to which the flow has organized into a collection of vortices can be seen in figure 1. 

Both energy and enstrophy decay throughout the simulation because of the limited 
initial Reynolds number (figure 2), although there is a slight tendency for the decay 
rate to decrease with time. Enstrophy decays more rapidly as expected, although the 
rate is noticeably less than the similarity prediction (dashed line) as previously noted. 
The similarity transformation (1.1) is also only partially successful in collapsing the 
energy spectra (figure 3b). As later spectra lie to the right in the similarity coordinates, 
the evolution is slower than predicted at all wavenumbers. Self-similarity on a different 
timescale does not appear to be out of the question however. 
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t = O  t = 2 1  

FIGURE 1 .  ( a )  Initial vorticity. ( b )  Final vorticity. 

lo4 T---- 

lo' I 
10-3 ----- 100 +-m-T 

10-2 lo-' 100 10' 102 10-2 lo-' 100 10' 102 
t t 

FIGURE 2. (a )  Energy € us. t. ( b )  Enstrophy 2 us. t. The dashed line corresponds to the t r 2  
similarity law. The dots indicate the sampling times, T,, listed in table 1. 

By contrast, the one-point velocity density, obtained by binning collocation-grid 
values into 501 intervals, is nearly time invariant as predicted (figure 4a). This is 
particularly true at intermediate times when the integral scale is not too large and 
the sample density is not too noisy. The density is close to Gaussian and narrows 
slowly as energy decays. The invariance is also noticeably improved when similarity 
variables, defined by the instantaneous energy, are used (figure 4b). 

The one-point vorticity distribution also narrows significantly with time (figure 5a), 
an indication that the Reynolds number of the Navier-Stokes simulation is too low to 
demonstrate convincingly that the amplitude of the most intense vortices is conserved. 
The density does appear to be self-similar over a range of vorticity however, beyond 
which it falls off rapidly (figure 5b). Also, the range of the similarity variable at, over 
which self-similarity applies, appears to increase with time (since the extrema decay 
more slowly than r- ' ) .  The value of p w  also falls off slowly in the self-similar region 
just above the tails (as seen in log-log coordinates in figure 6a) ,  suggesting that the 
normalized field is becoming increasingly intermittent and non-Gaussian with time. 

The hyperviscosity simulation is similar in most respects except that energy is 
now more nearly conserved whereas enstrophy decays even more slowly, presumably 
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FIGURE 3. (a) Energy spectrum for t = 0 (triangular curve) and t = T,. Later curves are shifted to 
the left. (b)  In terms of similarity variables. Later curves are shifted to the right. 
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FIGURE 4. (a) One-point velocity distribution for t = Ti. Later curves are narrower. ( b )  In terms of 
similarity variables using instanteous energy. 
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FIGURE 5. (a) One-point vorticity density at times t = Ti. The density narrows with time. ( h )  In 

terms of similarity variables. The scaled density broadens with time. 
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T, 6 d N ,  
0 2.55 10,000 0 
0.22 2.52 6,874 20 
0.47 2.49 3,631 38 
0.99 2.47 1,696 64 
2.15 2.46 1.001 104 
4.61 2.45 712 175 
9.99 2.44 558 309 

TABLE 2. Hyperviscosity simulation (v8 = 

10-7 b---,-----t  
10" 1 02 104 

I otl 

1 0" I02 104 

lot1 

FIGURE 6. One-point vorticity density in log-log coordinates. (a )  Navier-Stokes. ( h )  Hyperviscosity. 
The reference lines have slopes of -1.4. 

because of the higher effective Reynolds number (table 2). Similarity again fails for 
both the enstrophy decay rate and the energy spectrum but holds for the velocity 
density and central portion of the vorticity density. The latter is noisier however 
(figure 6b). The vorticity density is again found to narrow with time but much more 
slowly, suggesting that the amplitude of the most intense vortices is more nearly 
conserved. The dimensionless similarity range increases even more quickly with time 
so that the normalized field becomes even more intermittent. 

There are differences between the two simulations (figure 6): while both vorticity 
densities appear to exhibit power-law behaviour above the tails with similar slopes, 
the peak of the hyperviscosity density is about a factor of 2 lower and the power-law 
range begins at somewhat larger values of wt. This may be due to the form of the 
dissipation operator although residual Reynolds number effects cannot be discounted. 

Other simulations suggest that the enstrophy decay rate and vorticity moments 
of the Navier-Stokes simulations depend on the initial conditions and Reynolds 
number, whereas the velocity density and scaled central core of the vorticity density 
are relatively insensitive to these factors. 

3. The vorticity distribution 
After an initial transient period pco appears to obey Batchelor scaling for lo/ < 

co,(t), while it falls off rapidily in the transient tails. The rapidity of the fall-off in the 
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tails also appears to increases with time in similarity variables, suggesting that the 
density can be approximated by the truncated expression 

which is a special case of the generalized similarity (1.7). The bound w, is evidently a 
measure of the amplitude of the most intense vortices in the field (possibly excluding 
rare and inconsequential 'outliers' associated with the transient tails) and so should 
in some sense be analogous to the McWilliams' (1990) invariant text, exploited by 
Carnevale et al. (1991). In other words, om should be invariant for large Reynolds 
numbers. 

Since 

- 2t-, L O r n t  xqf(x) dx ( 3 4  

and since w,t should increase with time, there are two possibilities: either 
(4 

%It 

1q(wmt) = 1 xqf(X) dx 

converges for all q as w,t + co, in which case the dependence on om drops out. 
Batchelor's hypothesis and (1.3) then hold (although this could take some time to 
develop i f f  is broad). Otherwise 

(ii) I, diverges for q > qc as w,t + co (it is emphasized that pa is truncated, not 
f ) .  In this case similarity is recovered when q < qc and spoiled for q > qc. Given 
the failure of the enstrophy decay law this is the most likely possibility, at least when 
q 2 2. In fact, since the (scaled) density appears to be hyperbolic (figure 6), i.e. 

f - c/2)xI'+qc 

as 1x1 + co, where c and qc = 0.4 are universal, similarity appears to be spoiled for 
all moments q > qc. 
It is, of course, always possible that similarity will be recovered after sufficient 
time, although no such tendency has ever been observed. In fact, the slopes of the 
higher-order moments (figure 7a) decrease slightly near the end of the Navier-Stokes 
simulation, suggesting that the departures from similarity are actually increasing 
(although the domain size could also be a factor). 

Since f can be divided into two ranges, p w  has three distinct parts: a self-similar 
central core (01 < x'/ t ,  a self-similar intermediate hyperbolic range x * / t  < (01 < w, 
and weak transient tails for 10) > wm. Here, X* denotes the beginning of the hyperbolic 
range of f(x). In the Navier-Stokes simulation we estimate that X* = 70 k 10. 

4. Vorticity moments 
4.1. Modlfied similarity 

If f is hyperbolic, all moments of f of order q > qc diverge, while the vorticity 
moments exhibit a phase transition? 

cq t-4, 
c ln(w,t) t-qc, 4 = q c  (4.1) 
c (q - q )-I w4-% t-4' 

-1 -= 4 < q c  

3 q > q c ,  
(1wI4) { 

m 

t Here the term 'phase' is used in the thermodynamic sense of coexisting phases of a substance. 
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FIGURE 7. (a) Vorticity moments vs. t for q = -:, i, {, 1, 1 f .  2, 3 ,  4, 6, 8 and 10, normalized by the 
value at t = lop2 ( b )  Slopes of (a) measured over the range 2 1 < t < 21 The solid line corresponds 
to similarity while the dashed line is r-'" with uy = 0 2 + 0 5q 

as t + co between the self-similar 'sea' and the coherent vortices, where cq represents 
the (convergent) moments of f .  Moments of order q < q( consequently obey 
Batchelor scaling, while those of order q > q( are similar in form to (1.5) on setting 
qc = 5/2. Equation (4.1) has the advantage that it is dimensionally consistent and the 
q-dependence of the prefactors is explicit for q 3 qc .  Note that while both expressions 
(1.5) and (4.1) predict q-independent decay rates, they differ in their dependence on 
the invariant by a factor o;qt, if o,,, and Serr are identified (or proportional). It is 
argued later that this is probably related to the fact that the vortex properties are not 
narrowly distributed at large times, as assumed in the vortex theory. 

Equations (4.1) and (1.5) both predict smaller enstrophy decay rates and hence 
enhanced energy dissipation, i.e. t-4' (with q( = 0.4) versus tP2 ,  so that the net 
(i.e. time-integrated) dissipation is unbounded as t --+ a. In other words, even 
though the Reynolds number of the energy-containing scales increases in time, the 
energy dissipation ultimately becomes important at large times, presumably driving 
the system towards a state of rest (unless the Reynolds number is infinite initially). 

4.2. Comparison with simulations 
The vorticity moments of the Navier-Stokes simulation scale reasonably well with 
time as 

(figure 7a), although a close examination indicates some curvature in the higher-order 
moments. The moments exhibit a clear phase transition at small q ,  where they agree 
with the Batchelor prediction 

a4 = 4 
(figure 7h, solid line). By contrast, the decay rate of the higher-order moments is 
linear in q ,  i.e. 

in apparent contradiction with (4.1). This is explained if wrvl decays due to finite 
Reynolds number effects. Thus if we follow Weiss & McWilliams (1993) and take 

( 1 ~ 1 ~ )  - t r U 4  (4.2) 

a4 = 0.2 + 0.5q (4.3) 

cc), - t-" 
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.. 

I ~ l ~ 1 ~ 1 ~ 1 ~ 1  

0 4 8 

4 

FIGURE 8. Same as figure’i(b) but for hyperviscosity. The dashed line corresponds to t-0.4. 

then (4.1) gives (4.2) with 

i.e. a power-law decay of w, induces a linear q-dependence. Furthermore, (4.3) 
is recovered on taking q = 0.5. In other words both constants are determined by 
choosing a single parameter (direct support for power-law decay of om and q = 0.5 
is also given below). Note however that when (1.5) is used in place of (4.1) then 

aq = (4  - 4c)Y + qc, 

aq = 411 + 5/2, 

which cannot be made to agree with (4.3) for any choice of y. 
The vorticity moments of the hyperviscosity simulation also scale with time but are 

somewhat noisier. They also exhibit a clear phase transition and Batchelor similarity 
for q < qc, while 

for the higher-order moments (figure 8), i.e. the exponent is independent of q and 
equal to qc as expected when w, is invariant. 

aq 0.4 (4.4) 

We have also attempted to measure w, directly using 

which according to (4.1) tends to om for q qc. Qj as a function of q at different 
times for the Navier-Stokes simulation is shown in figure 9(a). Qj decays with time 
(reflecting the decay of w,) and is independent of q only for large q at early times 
while it is independent of q for all q at large times. This is expected since the moments 
will converge to (4.1) only when the hyperbolic range is long enough to ensure that 
the main contribution comes from w 0,. At early times the range is too short so 
(4.1) holds only for large q. At later times the range is long and (4.1) holds for all 
4 > 4 c .  
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FIGURE 9. (a )  @ us. q at time t = 0.6,1,2,5,11.1,21.2. @ decreases with time. ( b )  we = max(lw1) 
(curve) and @(q = 25, t )  (dots) us. t. The dashed line corresponds to r r o 5 .  

The value of om, estimated from @(q = 25, t )  is seen to decay as tro.' (figure 9b), as 
required in (4.3). Also shown is the extreme value of the vorticity field w, = max(lw1). 
The fact that w, is only slightly larger than LO, is a little worrying given that the 
sample moments are expected to be reliable estimates of ensemble averages only 
when they are not dominated by a few extrema. Note also that w, does not decay 
monotonically early on in the Navier-Stokes simulation as it should, indicating that 
the dissipation range is under-resolved initially (figure 3 ) .  The long-time evolution 
is thought to be accurate however, as energy begins to cascade upscale. A similar 
procedure applied to the hyperviscosity simulation is found to be consistent with 
conservation of w,. 

4.3. Energy spectrum 
As already noted, figure 3(b)  suggests that the energy spectrum may be self-similar on 
a different timescale. If we suppose that E ( k ,  t )  depends on t only in the combination 
t g ( o , t ) ,  i.e. if (1.6) can be written 

E = U't g ( o m t )  F ( k U t g ( o , t ) ) ,  

then the only form that is consistent with (4.1) at 4 = 2 is 

where a = 1 - q,/2. While this expression is not as well-founded as those for the 
vorticity density and moments, it turns out to be quite effective in collapsing the 
spectra of the Navier-Stokes simulation (figure 10a). It is less succesful for the 
hyperviscosity simulation however, particularly at low wavenumbers (later curves lie 
to the left). 

5. The vortices and the sea 
It is tempting to associate the hyperbolic range of the vorticity density with the 

spectrum of vortex amplitudes or equivalently 

w$ = x'/t 
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FIGURE 10. Energy spectra at times T, in terms of modified similarity variables. (a) Navier-Stokes. 

( b )  Hyperviscosity. 

\, 

with 'mean sea-level' which separates the vortices from the filamented background. 
If this is the case, then the vorticity density cannot be explained by a narrowly 
distributed collection of vortices with top-hat or Gaussian profiles, since the vorticity 
in the hyperbolic range is too plentiful.? The conjecture is confirmed to some extent by 
the fact that the universal contours 100/t and 10/t, straddling sea-level (= 70/ t )  lead 
to a reasonable separation between vortices and filaments throughout the evolution 
(figure 11). Note that each panel consists of only two contours of w. Since there are 
residual filaments in panels (a) and (c) and a few vortices in (b)  and (d), the separation 
holds only in some average sense. 

According to this interpretation there is a spectrum of vortices with amplitudes in 
the range 

which increases with time due to the continual production of ever weaker vortices that 
are either left behind as the sea decays away, or are residuals of interactions between 
stronger vortices. Vortex production in the sea is expected if the flow is self-similar. In 
any case, the spectrum of vortex amplitudes appears to broaden with time, possibly 
explaining the discrepancies between (4.1) and the narrow-band prediction (1.5). 

0 s  < 101 < Urn, 

Also since 
A ( o l )  = Prob(Iw( > w l )  

represents the fractional area occupied by fluid with vorticity greater than 01, the 
area occupied by vortices with amplitudes greater than a $xed threshold 

4 U l )  = c/qc(wlt)q' 
decays with time as observed in the vortex census of McWilliams (1990). On the other 
hand, the total area occupied by all vortices 

A ( x * / t )  = c/qcx*yc 

is constant in time. Apparently, losses incurred during the mergers of larger vortices 
are compensated by the continual production of ever smaller vortices of order x * / t .  

t As noted by a reviewer, a field of Gaussian vortices with a single size and amplitude gives 
p(,, - w-' which is too shallow to explain the observed density. 
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t=3.5 

FIGURE 11. Universal vorticity contours: ( a )  /w1 = 100/t, r = 3.5; ( h )  I(o = 10/ t ,  t = 3.5; 
(c )  JwI = 100/t, t = 21.2; (d )  )(O/ = 10/t, t = 21.2. 

Like the Batchelor prediction for the vorticity density, the ‘sea-level’ is ‘super universal’ 
in the sense that it is totally independent of the properties of the flow. 

6. Final remarks 
Our results suggest that while Batchelor’s similarity hypothesis fails to describe 

some aspects of decaying two-dimensional turbulence, it succeeds for others. In 
particular, it holds for the one-point velocity distribution, the central portion of the 
one-point vorticity density, and low-order vorticity moments. I t  fails for higher-order 
moments, essentially because the underlying universal density is hyperbolic and, in a 
sense, describes an infinite enstrophy flow. Equivalently, the failure can be attributed 
to the existence of a second rugged invariant, which can either be associated with 
the support of the vorticity density or the amplitude of the strongest vortices. All 
vorticity moments continue to scale with time but exhibit a phase transition. The 
higher-order moments depend on the second invariant and are similar in form to 
those predicted by the vortex model of Carnevale et al. (1991) in that the decay rates 
are independent of the order. There are differences however, particularly with regard 
to the dependence on the invariant, presumably because the vortex properties do not 
remain narrowly distributed as t -+ w for flows on unbounded domains. In particular, 
it is found that there is an expanding spectrum of vortices with amplitudes in the 
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range o,~ d (wI < w,, where the lower bound cc), 2 70/ t  defines ‘mean sea level’, the 
threshold separating the vortices from the background sea. 

Our description as well as that of Carnevale et al. (199 1) is based on the existence 
of a second rugged invariant, cc),, in the high-Reynolds-number limit, which to date 
has only been observed in hyperviscosity simulations. Given its potential significance, 
additional theoretical and numerical confirmation of the invariant should be a priority. 
The extent to which two- and higher-point statistics can be explained also remains 
an open question. 

We appreciate helpful comments expressed by D. Straub and the anonymous 
reviewers. The second author would also like to acknowledge support from the 
Natural Sciences & Engineering Research Council of Canada. 
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